a. create a profile for age x income

Based on scatterplot of age and income, there are clear groupings of age and income:

age: 18-39 (younger)

low income: 0-99.999

```
mid income: 100,000-199,999
     high income: 200,000-400,000

    age: 40-85 (older)

     low income: 0-179,999
      mid income: 180,000-299,999
     high income: 300,000-600,000
# for-loop if-statement: assign criterias
```

```
result = []
for index, row in opc_mkss.iterrows():
    income = row['income']
    age = row['age']
    if (18 <= age <= 39) and (0 <= income <= 99999):</pre>
        result.append('younger low income')
    elif (18 <= age <= 39) and (100000 <= income <= 199999):
        result.append('younger mid income')
    elif (18 <= age <= 39) and (200000 <= income <= 400000):
        result.append('younger high income')
    elif (40 <= age <= 85) and (0 <= income <= 179999):
        result.append('older low income')
    elif (40 <= age <= 85) and (180000 <= income <= 299999):
        result.append('older mid income')
    elif (40 <= age <= 85) and (300000 <= income <= 600000):
        result.append('older high income')
```

```
else:
    result.append('NA')
```

```
# input result in new column named 'age income'
opc mkss['age income status'] = result
# count of each group
```

```
23125
```

older high income older low income 5866911

opc_mkss['age_income_status'].value_counts().sort_index()

older mid income 46377

younger high income 11589

younger low income 3020502 younger mid income 89845 Name: age_income_status, dtype: int64